
Vue Report
Amsterdam 2022

SPECIAL EDITION FOR THE LARGEST

VUE CONFERENCE IN THE WORLD

BROUGHT TO YOU BY MONTERAIL

2

What’s inside

01. 3Preface

02. 8What’s new in Vue

03. 11State of Vuenion 2022 by Evan You

04. 18Vue Today

05. 36Review of Vue

37Carlos Rodrigues (VueJs Core Team)

39Lucie Haberer (Prismic)

41Filip Rakowski (Vue Storefront)

43Maya Shavin (Microsoft)

45Ramona Schwering (Shopware)

06. 47Experts Corner

48Filip Rakowski (Vue Storefront)

52Daniel Roe (Nuxt Core Team)

57Anthony Fu (Vue, Nuxt and Vite Core Teams)

07. 63Technical Case Studies

Preface

What’s special about this edition of the Vue report? We’re

sharing the idea and goals behind it to let you know what

to expect down the road.

01.

4

VUE REPORT: AMSTERDAM 2022

S ince its first release in 2014, Vue.js has been increasing in popularity and

users. It has been a long journey to become what it is now. From a small

project, it turned into a mature framework used (and loved) by hundreds of

thousands of developers all over the world.

What’s the secret sauce to making Vue so universal?

This report shows how Vue can be used to solve interesting development challenges,

how it changed since the last update, and what experts say about their experience

with this framework.

The idea behind the report comes from our knowledge-sharing approach and willing-

ness to support communities; values that have been with Monterail for years now. As

an official Vue.js partner (and author of four Vue.js reports), we want to support and

promote Vue.

We want to provide expert-based content for other experts. To inspire and give food

for thought. For Vue lovers by Vue lovers - simply to enjoy.

Enjoy!

Joanna Staromiejska-Drwięga - Editor and Writer
 CONTENT MARKETING TEAM LEAD AT MONTERAIL

Błażej Cepil - Writer
 DIGITAL MARKETING TEAM LEAD AT MONTERAIL

Natalia Leśniak - Designer
 WEB DEVELOPMENT & DESIGN LEAD AT MONTERAIL

5

PREFACE

Contributors

Anthony Fu
Core team member
of Vue, Nuxt and Vite

/antfu7

Tomasz Kania-Orzeł
Head of Technology
at Monterail

/KaniaOrzel

Filip Rakowski
CTO & Co-founder
at Vue Storefront

/filrakowski

Daniel Roe
Framework Architect
at Nuxt Labs

/danielcroe

Ramona Schwering
Software Developer
at Shopware

/leichteckig

Lucie Haberer
Developer Experience
Engineer at Prismic

/li_hbr

Evan You
Creator of Vue.js

/youyuxi

Szymon Licau
Principal Engineer
at Monterail

/szymon_licau

Carlos Rodrigues
VueJs Core Team
Member

/pikax_dev

Artur Rosa
Frontend Architect
at Monterail

/rosickeyy

Maya Shavin
Senior Software
Engineer at Microsoft

/MayaShavin

https://twitter.com/antfu7
https://twitter.com/KaniaOrzel
https://twitter.com/filrakowski
https://twitter.com/danielcroe
https://twitter.com/leichteckig
https://twitter.com/li_hbr
https://twitter.com/youyuxi
https://twitter.com/szymon_licau
https://twitter.com/pikax_dev
https://twitter.com/rosickeyy
https://twitter.com/MayaShavin

6

VUE REPORT: AMSTERDAM 2022

Vue Amsterdam
The Vuejs Amsterdam team is committed to fostering and creating learning and con-

nection opportunities for the Front-end Developer community. One way of doing it is

to organize events and conferences like Vuejs Amsterdam - the world's most special

and largest Vue Conference.

Vuejs Amsterdam's organisers love for Vue, community building and education is also

spread throughout it's intimate community events under the name Vuejs Roadtrip in

various cities throughout Europe like Barcelona, Berlin and Paris and numerous Free

Community Meetups. Other conferences include JSWORLD Conference, React Miami

as well as 4 other major conferences. Our work for the Front-end Developer Commu-

nity has seen over 6,000 people gain knowledge in the last 5 years.

Since Vuejs Amsterdam started in 2018, it has been a sold-out conference. Having

Evan You, the creator of Vue, opening the event attracts thousands of people from all

over the world each year.

20+
Vue.js Core Members,
Library Authors & Experts

2k
Attendees

50+
Audience
Countries

2
Full Days
of TalksV

U
E

A
M
S
T
E
R
D
A
M

I
N

N
U
M
B
E
R
S

7

PREFACE

Why Vue?

We work with many developer communities and collaborate with many

projects in the JavaScript ecosystem, however, the Vue community quick-

ly differentiated from the rest because of how friendly, open and cohesive

it has been through the years. When we first started Vuejs Amsterdam

(back in 2018), we did it because we believed in the framework and want-

ed to see it succeed.

It's really remarkable how anyone with absolutely zero Vue.js experience

can be quickly productive with it and understand our implementation

after following some initial tutorials or reading the excellent documen-

tation. On top of that, we use it in combination with Nuxt which greatly

reduces the cognitive load when onboarding a new teammate since all

architectural decisions have not only been very carefully considered by

the Vue.js and Nuxt core teams, but they are consistent across all proj-

ects where we use Vue.js + Nuxt.

Luke Thomas
Founder of Vuejs Amsterdam

What's new
in Vue

The summary of Vue's exciting developments from the

perspective of the Principal Engineer at Monterail.

02.

9

VUE REPORT: AMSTERDAM 2022

V ue had quite a lot of exciting developments throughout last year. The lat-

est big release of version 3.2 - „Quintessential Quintuplets” has continued

to improve performance and add features for Single File Components.

Many libraries embraced Vue 3 and added support for it, while others have compatible

releases on the way.

Here are some of the exciting developments we could observe in Vue ecosystem:

We had the first stable release of Vite - a new kind of build tool for front-

end development. Vite brings a combination of blazing-fast development

experience and highly optimized production bundles. It’s also framework

agnostic and anyone can use it! Vite is the new recommended choice,

while Vue CLI enters maintenance mode.

Following the naming convention, we have also seen the release of Vit-

est - a new unit-test framework powered by Vite, which brings its blazing

fast speed to subsequent test runs, making it a fantastic choice for a TDD

approach.

Pinia released its first stable version and it is now the recommended li-

brary for state management in Vue 3. Introducing a simpler API, proper

TypeScript support, and utilizing hot module replacement, it’s a huge step

up in the development experience. While Vuex is still compatible with Vue

3, it is now in maintenance mode.

Volar was released as the new official development tooling for our IDEs.

It’s a huge step up in terms of full TypeScript support inside Single File

Components and performance. It also provides cross-component props

validation and type checking in our templates out of the box.

10

WHAT'S NEW IN VUE

Recently Vue Version 3 became the new default! Potentially requiring

some actions in projects using Vue version 2 as the latest version will

now point to Vue 3.

With this, we have also seen the release of new Vue docs overhauling

the design, UX and introducing new guides as well as a feature to toggle

between Options API & Composition API. This version also introduced an

interactive tutorial that walks you through all the major features of Vue. It’s

never been a better time for newcomers to try and learn Vue.

With all the latest additions it looks like the Vue ecosystem has changed for the better

along with the introduction of version 3. We see a new generation of tooling which

brings improvements in all development aspects. Development experience has sig-

nificantly improved thanks to Vite, Vitest and Volar.

Vue itself also continues to introduce many useful features and improve its perfor-

mance. New, overhauled documentation is also a fantastic way of learning all the new

and exciting things recently introduced. We see that Vue keeps on improving while

also delivering the promise of a solid technology choice, especially for new projects

going into the future.

Let’s see how Vue 3 and its evolution look from the perspective of its creator – Evan

You.

Szymon Licau
Principal Engineer

at Monterail

State of
Vuenion 2022
by Evan You

The creator of Vue.js summarises the breaking changes in

Vue 3, shares the details behind the process of upgrading

to the default version and envisages the future for Vue.

03.

Evan You
Creator of Vue.js

12

VUE REPORT: AMSTERDAM 2022

What has changed in Vue 3 since the last update?

Evan: We’ve just shipped our brand new documentation in February

2022 which essentially marked the completion of the soft launch pro-

cess. When Vue 3 was released it was really just the core, but Vue as

a whole has grown into the full ecosystem over time. The framework

consists of a library like a router, state management, build tooling, dev

tools, extension, IDE support. All of these things took a lot of effort to

bring up to date.

So now we have a new version of basically everything. We shipped

brand new docs, replaced Vuex with Pinia, the latest recommendation

for state management, our build tools are now powered by Vite. Our

new IDE extension is Volar which provides much better TypeScript sup-

port and experience. We also shipped important DX improvements like

<script setup>, and have more down the line.

How has TypeScript influenced the development experience
with Vue?

Evan: TypeScript is obviously on the rise so any modern framework has

to be designed with it in mind. Even if you don’t use TypeScript, Volar is

able to leverage Vue typing and give you hints, removing this mental bur-

den of remembering what type

of variable it is. All the type infer-

ence and checks also work in the

template. These simple mistakes

happen when you don’t have type

checking. Using TypeScript also

makes you confident when refac-

toring a large codebase because

you can easily see changes - the

tools will immediately show the

errors for you to fix.

Q

Q

Especially in a team
environment working
on a large project, us-
ing TypeScript with Vue
will greatly improve the
robustness of the code
that you write every
day.

13

STATE OF VUENION 2022 BY EVAN YOU

It’s been a year and a half since a stable version of Vue 3
made it the default. How did the process look?

Evan: For the initial release of Vue 3, we rewrote everything with Type-

Script but it is only now complete as Volar became the official exten-

sion. The documentation was completely revamped. All of the sections

were either revised or rewritten and they work with Options API and

Composition API and allow you to toggle between them. So the learning

experience and day-to-day experience got upgraded. Each piece was a

project on its own which is why the whole process took so long to finally

get everything in place. Now we can say that Vue 3 is ready.

Is such a deep transition process necessary?

Evan: It’s not always necessary but when we think of upgrading, there’s

always a tradeoff between building upon the existing codebase with

incremental improvements (and building more technical debt along the

way) or doing a big-bang rewrite.

Basing on Vue 2 codebase and

making sure everything’s 100%

compatible, we would carry along

the baggage of a lot of libraries

that relied on internal behavior

that’s specific to Vue 2.

So we felt like a big-bang rewrite is the right direction for us. The sit-

uation with Vue 3 was sacrificing some things in the short-term and

breaking some libraries but it was the cost we were willing to pay in

order to get rid of the past baggage. Now we have a clean state and it

will pay dividends down the road.

Although React or Ember almost seamlessly introduce new versions, it

causes a lot of maintenance overhead on their side. They have a good

system of slowly adding new features, phasing out the old ones, which

Q

Q

If we carried with it
forever, it would seri-
ously limit the amount
of innovation we could
implement in the long
run.

14

VUE REPORT: AMSTERDAM 2022

we can learn from. But at the end of the day, there’s no absolutely cor-

rect answer in engineering. When it comes to upgrading, it’s about the

trade-offs that you are willing to make.

Looking back, would you change anything?

Evan: We probably could have done a better job but I’m not sure we

would have achieved the same level of improvement. That’s the tradeoff

here. I would probably focus more on reducing the breakage of some

small edge cases, small behavior mismatches that we only discovered

after we started rolling out Vue 3. We would have tried to cover it a little

bit better. But it’s all in hindsight - you can’t foresee some things until

they happen.

How will Vue 3 affect businesses and why should they make
a shift?

Evan: I would suggest evaluating the situation on a case-by-case basis.

If you have a greenfield project, it’s Vue 3 all the way. It doesn’t make

sense to stick to Vue 2 anymore with everything new in place. Nuxt 3

will go stable in a few months which is another reason for transition.

If Vue 2 works and it works well,

making a change might not be a

cost-effective solution. It really de-

pends on how much you want to

leverage the new features. Vue 2

with Options API is still complete-

ly viable, and we plan to make it

easier to use Composition API / <script setup> easier in Vue 2 with 2.7.

But if you feel like switching to Composition API now will objectively

improve productivity, don’t hesitate to change.

Vue is used for all types of applications and company sizes
which shows it answers real-life cases. How did you work on
making the framework so universal?

Q

Q

Q

With an existing proj-
ect in Vue 2 however,
businesses still need
to weigh the pros and
cons of the upgrading.

15

STATE OF VUENION 2022 BY EVAN YOU

Evan: The initial version of Vue was really designed to lower the barrier

to entry. We made it easy to adopt, integrate into existing systems - we

still stick to this approach and value it a lot. Over time, we slowly add

pieces to support more advanced projects like Single Page Applications

routing, state management, TypeScript support.

At first, we had more users with

simple use cases and smaller ap-

plications. Along with more fea-

tures and tooling, the pool of Vue

users grew but initial users stayed

and can still use it the way they

like. So I guess that's our secret

sauce - to cover the full spectrum.

How do you feel five years after the first State of Vue? Back
then, you defended that Vue is no longer a “one-man army
project”. What is Vue accused of in 2022?

Evan: I don’t really think people “accuse” us of anything anymore. If we

are talking about complaints, there are still areas in TypeScript support

that can be improved. We’ve done a pretty good job supporting tem-

plate expressions. The only part we’re still working on is scoped slots

and generic components which are generally rare use cases, relevant

to really advanced developers. We’re trying to cover it but it won’t be a

deal-breaker for most users.

Currently the world of frontend frameworks looks quite stable
and differences are rather little. Do you think that there is still
room for something which will change the way we think about
front-end?

Evan: There are a few new things worth mentioning like Svelte and Sol-

id, especially the way they leverage the compile time optimization. I

think frameworks moving more into a compiler is a general trend. What

Q

Q

It’s been a long jour-
ney since 2014, with
lots of challenges but
every time we added
something, we tried to
sustain the core experi-
ence of using Vue.

16

VUE REPORT: AMSTERDAM 2022

I take away here is the “be a smart compiler” approach. Vue has already

done a lot in this direction, but also still has a lot of further potential to

be unlocked. Another aspect is the new wave of innovation, experimen-

tation happening in full-stack frameworks about reducing the overhead

of server-rendering and hydration. When we’re in a full-stack environ-

ment, there are lots of questions about how to leverage both server and

client to make the initial load more efficient, ship less out and do less

hydration work. We’re exploring it as next in line.

Let’s look broader than Vue, what major challenges are waiting
for the frontend world or even web development?

Evan: When we look at the web development world, there are various

apps there - simple landing pages, fully interactive apps, backend dash-

boards which are very complicated so you don’t even expect it to load

fast. There’s also this performance-sensitive case like e-commerce. In

general, the challenge is to bal-

ance developers’ efficiency and

the end performance. In most

of these areas, we’ve reached a

pretty good place, except for con-

tent-intensive e-commerce.

We already see some new things

here like Remix or Qwik. A lot of

these require controlling from a

compiler to the server to the cli-

ent. And all of them have to play

together to give you a fully inte-

grated solution that’s optimized end-to-end. You still write relatively

easy code and get optimal performance at the end. This is going to be

the biggest challenge - which solution can best integrate all three parts

together? I think this is a direction where we can work closely with the

Nuxt team and other members in the Vue ecosystem to explore.

Q

We’ll need more ver-
tical solutions that
could handle both the
backend and frontend.
That’s where you can
start doing interesting
things. We need to stop
thinking from a pure
client-side perspective
or a pure backend.

17

STATE OF VUENION 2022 BY EVAN YOU

Let’s look 5 years into the future. How do you see Vue?

Evan: I tend to think of Vue as an ever-evolving platform. We probably

won’t do a “Vue 2 to 3” type of upgrade in the next five years because

Vue 3 is a solid enough foundation to build upon for quite a while. We’ll

continue experimenting with the compilation strategy as the advantage

of Vue is a really flexible reactivity system.

We have a compiled single-file component and it can be compiled into

different output. You can change the output and the source code stays

the same. We hope for users’ experience to be stable throughout this

time. From the development experience perspective, we want it to stay

stable, but the compiled approach allows us to potentially ship big im-

provements under the hood. That’s our goal.

Q

Vue Today

What’s Vue’s current position on the frontend landscape?

How fast is Vue growing? The analysis of dozen of trusted

sources and key takeaways.

04.

19

VUE REPORT: AMSTERDAM 2022

L et’s take a look at the numbers. What has changed since 2021 and what’s

the current position of Vue on the framework landscape? How fast is Vue

growing?

We’ve reviewed over a dozen trusted sources and compared the results to previous

years as well as compared Vue to other popular JavaScript frameworks. This data

allowed us to establish an overview and draw conclusions. (Kudos to Tanguy Krotoff

who prepared this data comparison that allowed us to peek into some historical re-

cords).

Although the numbers are not consistent across sources because of different survey

samples, we can say with certainty: Vue is steadily growing in popularity. It does pro-

vide some unique (compared to React/Angular) possibilities like incremental imple-

mentation into an existing project, or ease of creating and maintaining small apps (not

to mention beginner-friendliness). You can build long-lasting products with it, since it’s

only increasing in popularity and use where in some cases the two main competitors

have seen a slight downside curve.

Vue manages to do all this without the corporate backing that Angular (Google) and

React (Facebook) have. Some of the sources we used also don’t consider the use of

Vue in China where it’s quite popular. Taking all this into consideration allows us to

conclude that Vue is alive and kicking strong.

Let’s dive into the details.

https://twitter.com/tkrotoff
https://gist.github.com/tkrotoff/b1caa4c3a185629299ec234d2314e190
https://www.monterail.com/blog/vue-vs-react

20

VUE TODAY

Statista

In August 2021, Statista asked 67,593 developers about their framework of choice and

these are the results. Vue moved up two places since 2020 and came in 5th with 19%

of respondents opting for it.

Most used web frameworks among developers worldwide, as of August 2021
(source: www.statista.com)

40.1%

34.4%

23.8%

23.0%

19.0%

18.1%

16.1%

15.7%

15%

14.6%

11.5%

10.1%

7.0%

4.0%

React.js

jQuery

Express

Angular

Vue.js

ASP.NET Core

Flask

ASP.NET

Django

Spring

Angular.js

Laravel

Ruby on Rails

Gatsby

https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/#professional

21

VUE REPORT: AMSTERDAM 2022

HackerRank

In 2020 (the latest data we have is still from 2020), HackerRank reached out to 116,648

developers to ask about the same thing as Statista did, but they also compared the

results with previous years. Vue came in 8th but it showed a steady growth of interest

among the HackerRank-related developers.

2020 2019 2018

AngularJS 1 1 1

React 2 2 3

Spring 3 3 2

Django 4 6 6

ExpressJS 5 4 4

ASP 6 5 5

.NETCore 7 7 7

Vue.js 8 9 10

Ruby on Rails 9 8 8

JSF 10 10 9

BuiltWith

Looking at the current (May 2022) Internet landscape, we clearly see that Vue, al-

though not being the most widespread, is steadily growing. Since January 2021, Vue.

js has doubled the number of live and historical websites and more than doubled the

number of live sites exceeding 2 million already.

(source: www.info.hackerrank.com)

https://info.hackerrank.com/rs/487-WAY-049/images/HackerRank-2020-Developer-Skills-Report.pdf

22

VUE TODAY

Vue

2 071 882

3 324 270

React

11 179 235

Angular

135 342

301 903

Svelte

1 189 351

Total live sites

Live and historical

Number of websites built with (source: www.builtwith.com)

1 000 000

2 000 000

3 000 000

4 000 000

5 000 000

6 000 000

7 000 000

8 000 000

9 000 000

10 000 000

11 000 000

12 000 000

1 846 100

23

VUE REPORT: AMSTERDAM 2022

7.14%

14.36%

22.29%

Vue

14.41%

28.28%

45.73%

React

1.93%
5.22%

9.23%

Angular

0.11% 0.29% 0.7%

Svelte

% of pages in the top 1m

% of pages in the top 100k

% of pages in the top 10k

Share in top sites (source: www.builtwith.com)

0.1

0.2

0.3

0.4

0.5

When it comes to a share in top websites, Vue built far more of those in the top 1m

than Angular. And while it built fewer big-hitters in the top 10k when compared to Re-

act, the share increased from 4,99% (in 2021) to 7,14% making it a pretty significant

contribution.

24

VUE TODAY

NPMtrends

NPMtrends says that the use of Vue has been growing steadily in the past five years,

maybe less so than React’s but it’s going hand in hand with Angular. Svelte is still

crawling with total downloads of npm packages with little over 300k.

(source: www.npmtrends.com)

Total live Live and
historical

Top
1 M

Top
100 K

Top
10 K

Vue 2 071 882 3 324 270 7.14%
71 363

14.36%
14 357

22.29%
2 229

React 10 945 991 no data 14.41%
144 101

28.28%
28 283

45.73%
4 573

Angular 135 342 301 903 1.93%
19 348

5.22%
5 220

9.23%
92

Svelte 20 922 29 636 0.11%
1,065

0.29%
291

0.7%
70

https://www.npmtrends.com/react-vs-svelte-vs-vue-vs-@angular/core
https://trends.builtwith.com/javascript/Vue
https://trends.builtwith.com/javascript/React
https://trends.builtwith.com/framework/Angular
https://trends.builtwith.com/framework/Svelte

25

VUE REPORT: AMSTERDAM 2022

NPM-stat

NPM-stat shows the number of packages downloaded per year and

the results confirm the growth trends from previous sources. Howev-

er, take into consideration that the graph below concerns only the first four

months of 2022 so we need to wait a little longer to get the full picture.

(source: www.npm-stat.com)

SimilarTech: market share & web usage
statistics

A look at SimilarTech brings some interesting findings. The number of websites and

unique domains built with Vue continues to grow from the very beginning. Angular

faces slowdown or dips while the number of React-based domains has more than

doubled. Historical context here clearly shows a growing trend both for Vue and React.

https://npm-stat.com/charts.html?package=react&package=vue&package=%40angular%2Fcore&package=svelte&from=2014-12-12&to=2022-05-26

26

VUE TODAY

SimilarTech: number of websites (source: www.similar-tech.com)

2022/04/06 2021/01/07 2020/09/22 2019/12/12 2018/12/16

Vue 298 670 220 538 195 214 157 831 54 881

React 1 279 596 1 126 095 1 005 214 1 069 073 420 066

AngularJS 368 054 384 515 378 038 517 701 325 339

0

1 250 000

1 000 000

750 000

500 000

250 000

2018 2019 2020 2021

Vue
React
AngularJS

2022

https://www.similartech.com/
https://www.similartech.com/technologies/vuejs
https://www.similartech.com/technologies/react-js
https://www.similartech.com/technologies/angular-js

27

VUE REPORT: AMSTERDAM 2022

SimilarTech: unique domains (source: www.similar-tech.com)

2022/04/06 2021/01/07 2020/09/22 2019/12/12 2018/12/16

Vue 194 403 140 184 121 748 91 509 40 033

React 709 461 313 355 296 347 287 997 196 048

AngularJS 182 889 188 734 189 590 203 614 171 570

0

300 000

400 000

500 000

600 000

700 000

800 000

200 000

100 000

2018 2019 2020 2021 2022

Vue
React
AngularJS

https://www.similartech.com/
https://www.similartech.com/technologies/vuejs
https://www.similartech.com/technologies/react-js
https://www.similartech.com/technologies/angular-js

28

VUE TODAY

GitHub dependents

The number of apps that will not run without Vue continues to grow showing a 46,52%

increase since 2020. What’s more interesting — Vue’s usage on GitHub has not slowed

down, whereas Angular 2+ did and in the case of AngularJS the number is even lower

than the year before.

Number of dependents (source: www.npmjs.com)

0

80 000

90 000

60 000

40 000

20 000

2018 2019 2020 20222021

Angular

Vue
React
AngularJS

2022/04/06 2021/01/07 2020/09/20 2019/12/12 2018/12/16

Vue 53 010 36 179 32 101 21 575 9 792

React 84 262 66 033 61 870 48 718 32 331

AngularJS 4 091 4 125 4 112 3 959 3 693

Angular 2+ 12 236 11 246 10 873 9 610 7 555

https://www.npmjs.com/
https://www.npmjs.com/package/vue
https://www.npmjs.com/package/react
https://www.npmjs.com/package/angular
https://www.npmjs.com/package/@angular/core

29

VUE REPORT: AMSTERDAM 2022

Stack Overflow questions

The questions asked on Stack Overflow increase in numbers for Vue and React. More

so for React, but this could be explained by the fact that Vue is more beginner-friendly

and is lauded for its comprehensive documentation. Add increasing popularity (for

both Vue and React, drawing in more beginners) to this rationale and we get a quite

reasonable explanation. There has been noticeably fewer questions about Angular

and AngularJS since around 2017 and a minimal share of questions asked about

Svelte itself.

(source: www.insights.stackoverflow.com)

State of JS

As authors of State of JS 2021 examined, there’s a growing upward trend in usage

of Vue.js by developers that reached 51%, the highest result since the beginning of

tracking.

https://insights.stackoverflow.com/trends?tags=vue.js%2Creactjs%2Cangular%2Cangularjs%2Csvelte

30

VUE TODAY

Usage of front-end frameworks (source: www.2021.stateofjs.com)

Although Vue.js is easy to learn (more than half of the SoV 2021 respondents describe

it this way), there are more React developers on the market who are already experi-

enced in this framework and would use it again.

Experience over time - Vue.js (source: www.2021.stateofjs.com)

0

40%

50%

60%

70%

80%

90%

100%

30%

20%

10%

Svelte

Vue
React
Angular

2016 2017 2018 20202019 2021

8.8% 32.2% 30.8% 27.2%2016

19.7% 51.4% 21.7% 5.5%2017

28.9% 46.7% 20.5%2018

40.5% 34.2%6% 19%2019

41.8% 31.4%7.3% 18.8%2020

41% 24.3%10.3% 24.3%2021

Would use again Would not use Interested Not interested Never heard

https://2021.stateofjs.com/en-US/libraries/front-end-frameworks/
https://www.monterail.com/blog/state-of-vue-2021-highlights
https://2021.stateofjs.com/en-US/libraries/front-end-frameworks/

31

VUE REPORT: AMSTERDAM 2022

Popularity Loved Dreaded Wanted

Vue 19.0% 64.4% 35.6% 16.7%

React 40.1% 69.3% 30.7% 25.1%

AngularJS 11.5% 23.2% 76.8% 5.8%

Angular 23.0% 55.8% 44.2% 8.47%

Svelte 2.8% 71.5% 28.5% 6.6%

2021 (+80,000 developers)

Stack Overflow surveys

Stack Overflow surveys its users each year, asking about their most and least favorite

frameworks. While the available survey questions are not consistent over the years,

the results confirm the upward popularity trend for Vue and Svelte (and downward for

Angular).

Stack Overflow survey: framework popularity (source: www.insights.stackoverflow.com)

0

40%

30%

20%

10%

2018 2019 2021

Vue
React
Angular
Svelte

2020

https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-web-frameworks
https://insights.stackoverflow.com

32

VUE TODAY

Popularity Loved Dreaded Wanted

Vue 17.3% 66.0% 34.0% 16.4%

React 35.9% 68.9% 31.1% 22.4%

AngularJS 16.1% 24.1% 75.9% 7.7%

Angular 25.1% 54.0% 46.0% 10.6%

2020 (65,000 developers)

Popularity Loved Dreaded Wanted

Vue 15.2% 73.6% 26.4% 16.1%

React 31.3% 74.5% 25.5% 21.5%

AngularJS/
Angular 30.7% 57.6% 42.4% 12.2%

2019 (+90,000 developers)

Popularity Loved Dreaded Wanted

Vue - - - -

React 27.8% 69.4% 30.6% 21.3%

Angular 36.9% 54.6% 45.4% 14.3%

2018 (+100,000 developers)

https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2018

33

VUE REPORT: AMSTERDAM 2022

JetBrains survey

In 2021, JetBrains released a “The State of Developer Ecosystem 2021” report based

on the answers of 31,743 developers from 183 countries or regions.

The share of Vue.js regular users grew from 32% in 2020 to 43% in 2021, while that of

Angular users decreased from 23% in 2020 to 18% in 2021. Similarly in the case of Re-

act which is regularly used by less than 50% of developers, compared to 64% in 2020.

JetBrains survey: framework popularity (regular use) (source: www.jetbrains.com)

0

80%

60%

40%

20%

2017 2018 2019 20212020

Angular

Vue
React
AngularJS

2021 2020 2019 2018 2017

Developers 31 743 19 696 7 000 6 000 5 000

Vue 43% 32% 39% 33% 20%

React 49% 64% 54% 60% 49%

AngularJS 9% 11% 14% 21% 44%

Angular 18% 24% 23% 20% 22%

http://www.jetbrains.com
https://www.jetbrains.com/lp/devecosystem-2021/javascript/
https://www.jetbrains.com/lp/devecosystem-2020/javascript/
https://www.jetbrains.com/lp/devecosystem-2019/javascript/
https://www.jetbrains.com/research/devecosystem-2018/javascript/
https://www.jetbrains.com/research/devecosystem-2017/javascript/

34

VUE TODAY

Google Trends

Google Trends gives us quite a broad spectrum of interests but for gauging popular-

ity it’s one of the most trusted sources out there. There was a drop of interest in all

frameworks around October 2020 but since then Vue has been trending again, slowly

getting back on track.

(source: www.trends.google.com)

Social media

And one last place we can look at to see how Vue is doing is social media. Namely

Reddit and Twitter — virtually two of the most authoritative social sources out there.

Looking at the number of followers over the years it’s clear that Vue continues to get

traction.

Reddit followers (source: www.frontpagemetrics.com)

https://trends.google.com/trends/explore?cat=31&date=today%205-y&q=React%20javascript,Vue%20javascript,Angular%20javascript,Svelte
https://frontpagemetrics.com/r/reactjs#compare=vuejs+angular+svelte

35

VUE REPORT: AMSTERDAM 2022

Twitter followers (source: www.twitter.com)

2022/04/06 2021/01/07 2020/09/22 2019/12/12 2018/12/16

Vue 247.8 K 196.8 K 183.8 K 149.3 K 102 K

React 572 K 451.1 K 421.8 K 355.5 K 278 K

Angular 417.7 K 376.8 K 370 K 345.9 K 304 K

0

500

600

400

300

200

100

2018 2019 2020 2021 2022

Vue
React
Angular

http://www.twitter.com
https://twitter.com/vuejs
https://twitter.com/reactjs
https://twitter.com/angular

Review of Vue

The same five questions, yet pretty different answers. Vue

experts talk about their most exciting Vue-based projects,

favorite aspects of the framework, and most burning pro-

blems.

05.

37

VUE REPORT: AMSTERDAM 2022

F ive essential questions answered by five experts will help you gauge how Vue is

used, can be used and what’s in store for the future.

The questions we asked were:

1. Why do you use Vue and what do you like most about it?

2. What’s the most exciting project you’ve done with Vue? For what

type of projects would you recommend trying out Vue?

3. What is the most burning problem you’d see Vue tackling next?

4. Have you adopted Vue 3 yet and how did it look? What was the

reason? OR What keeps you from implementing Vue 3? What

would make you change your mind/start the process?

5. How do you see the future of Vue?

Why do you use Vue and what do you like most about it?

Carlos: I use Vue because I love how the reactivity does most of the

heavy lifting and things just work. The

way where the Vue template is basically

html with some extra bits, is awesome

because you can use the best tool for the

job (using html and css), without needing to go to JSX (which is not

HTML).

Carlos Rodrigues
VueJs Core Team
Member

Q

What I like the
most is the Single
File Component.

38

REVIEW OF VUE

What’s the most exciting project you’ve done with Vue? For
what type of projects would you recommend trying out Vue?

Carlos: Building a medical app is probably the most exciting project

because of some technical challenges but also because of the goal.

Building such software will improve the life of clinicians and make a

huge change to outdated infrastructure. I recommend Vue for all sorts

of projects, it is quite flexible - you can build simple brochure apps with

it or go for highly complex applications.

What is the most burning problem you’d see Vue tackling
next?

Carlos: DX, currently DX on Vue could be better. I believe Vue 3 improves

quite a lot and new tools aim to provide a better DX for developers, ei-

ther by TypeScript or by extensions like Volar or VueDX.

Have you adopted Vue 3 yet and how did it look? What was the
reason? OR What keeps you from implementing Vue 3? What
would make you change your mind/start the process?

Carlos: Yes, I have adopted Vue 3 to all my current projects. Because

I work mostly with complex applications, Vue 3 was a no-brainer. The

Composition API and reactivity are much welcomed. Although you can

still do it in Vue 2, the integration as a plugin is not as good as the native

support in Vue 3.

How do you see the future of Vue?

Carlos: I see Vue becoming more prominent in the Web space. I re-

member when I started learning Vue, there weren’t many job offers but

today it is a different landscape. I’m quite happy to see it and expect the

efforts that the Vue Team is doing will improve the framework and bring

even more people to the ecosystem.

Q

Q

Q

Q

39

VUE REPORT: AMSTERDAM 2022

Why do you use Vue and what do you like most about it?

Lucie: Funny enough, when I started to learn JavaScript frameworks in

2017, I started with React. A bit after, I picked up Vue on the side to be

able to compare the two frameworks and come up with my own opinion

on them.

As I was learning Vue, things clicked for me! As a student I struggled

to understand JSX, the Vue syntax felt just more natural to me, being

closer to what I already knew: HTML, CSS, and JavaScript.

The proximity of Vue with web basics is something I’m still really fond

of. To me, it’s one of the framework’s greatest strengths, and the main

reason I keep recommending Vue to teams who want to pick up a Ja-

vaScript framework for their projects.

What’s the most exciting project you’ve done with Vue? For
what type of projects would you recommend trying out Vue?

Lucie: In my opinion, Vue fits any kind of project. You need some inter-

activity on a single page? Drop in the

runtime library. Want more? Between

Vite and the incoming Nuxt 3, the

choice is yours to build the website

or web app of your dreams.

Regarding Vue projects I worked on,

I’m still really fond of the experience

I had at Société Générale (French

multinational bank). I managed and

Lucie Haberer
Developer Experience
Engineer at Prismic

Q

More recently, the
new Nuxt 3 link com-
ponent has been an
exciting project I had
the opportunity to
work on and a great
way to contribute to
the framework.

Q

40

REVIEW OF VUE

organized the migration of Java monoliths to Vue-based Jamstack apps

there.

What is the most burning problem you’d see Vue tackling next?

Lucie: During the last year or so, the Vue Core team and the community did

an outstanding job at making the Vue ecosystem ready for Vue 3. With Vue

3 now being the default, I think it’s time for us to look ahead and explore

what the future of web development will look like.

Have you adopted Vue 3 yet and how did it look? What was the
reason? OR What keeps you from implementing Vue 3? What
would make you change your mind/start the process?

Lucie: Yes, and no, so I’ll answer both!

First of all, part of my job at Prismic is about developing the Vue integra-

tions developers use to integrate with our tool. In that regard, I’m maintain-

ing both a Vue 2 and a Vue 3 plugin. From that experience, I can tell that I

enjoy the new composition API and strong TypeScript integration that come

with Vue 3.

When it comes to projects, I am and would definitely build new web apps

and SPAs with Vue 3. However, when it comes to static sites, Vue 3 still

lacks strong support for them: Server-Side Rendering is still experimental

with Vite and Nuxt 3 is not fully there yet at the time of answering.

How do you see the future of Vue?

Lucie: I’m really excited about the future of Vue. Vue 3 set strong founda-

tions that will enable developers for quite some time to continue exploring

the future of web development.

I’m also hyped about the future of the ecosystem living on top of Vue. We’ve

seen game-changing tools being created around the framework, starting

with Vite, and more recently Vitest, without mentioning Pinia, Slidev, His-

toire, and more!

Q

Q

Q

41

VUE REPORT: AMSTERDAM 2022

Why do you use Vue and what do you like most about it?

Filip: I started using Vue long ago when AngularJS was still a thing. I

saw an article about Vue on Medium and immediately fell in love with

its syntax and simplicity. As I knew

AngularJS, the reactivity system

was familiar to me and the rest of

the concepts I grabbed almost im-

mediately.

At that time I was an inexperienced

developer. The fact that Vue was ful-

ly Open Source without any big cor-

poration behind it was a thing that

made me excited about being part of this community which led to many

amazing opportunities and friendships.

What’s the most exciting project you’ve done with Vue? For
what type of projects would you recommend trying out Vue?

Filip: I don’t think anyone would imagine me writing anything else than

Vue Storefront! It’s an Open Source framework for building eCommerce

Storefronts. Right now it requires

heavy time and money invest-

ments to migrate from mono-

lithic platforms to headless and

the frontend is a significant part

of this investment. Our goal is to

make headless available for big

and small companies all around

Q

What I loved about
Vue the most was
its simplicity and the
fact that it was en-
forcing some level of
code readability de-
spite being very easy
to learn.

Filip Rakowski
CTO & Co-founder
at Vue Storefront

Q

It has proven itself to
be extremely easy to
adopt which was also a
major factor influenc-
ing the success of Vue
Storefront.

42

REVIEW OF VUE

the world through our Open Source technology. We chose Vue at that

time because we knew it would be easy to learn by backend developers

and juniors.

A lot of time has passed since then and Vue matured a lot. I can con-

fidently say that Vue is perfectly suitable for any project that requires

a frontend framework, including enterprise ones but it still shines the

most when it’s being used by inexperienced developers or ones who

transition from backend technologies.

What is the most burning problem you’d see Vue tackling
next?

Filip: I wouldn’t call that a problem, rather a challenge. We see that the

frontend frameworks world is going through a massive change. Para-

digms are changing. People are starting to notice that modern frontend

frameworks produce vast amounts of JavaScript that slows down the

websites so obviously they are looking for ways of overcoming these

issues. Svelte is reducing the runtime JS to a minimum through a com-

pilation step, many frameworks adopt island architecture to better uti-

lize server-side capabilities of the framework and use JavaScript only

when it's absolutely necessary. I am curious how Vue will adapt to the

changing requirements of the frontend market and if its concepts will

remain viable. I keep my fingers crossed for it!

Have you adopted Vue 3 yet and how did it look? What was the
reason? OR What keeps you from implementing Vue 3? What
would make you change your mind/start the process?

Filip: I had a chance to play a bit with Vue 3 but since Vue Storefront is

using Nuxt we are still waiting for Nuxt 3 to be stable to fully embrace it.

How do you see the future of Vue?

Filip: While I can’t wait to see Vue exploring different concepts of re-

ducing the JavaScript size and its execution time, the thing that I am

Q

Q

Q

43

VUE REPORT: AMSTERDAM 2022

excited about the most is Nuxt 3. I think the JavaScript frameworks

themselves are getting closer to each other in terms of syntax and fea-

tures but the meta frameworks on top of them like Nuxt and Next are

the main differentiators in the framework ecosystem. I’d love to see

Nuxt implementing new features that „automagically” do the boring

stuff for us and under the hood optimize our code to the most optimal

form. This is what they’ve been known for, and looking at the current

state of Nuxt 3 it seems like it’s gonna be even easier to build excellent

web applications with Vue!

Why do you use Vue and what do you like most about it?

Maya: Vue is very light weighted, so easy to start, and still keeps the

core concept of HTML, JS, and CSS as the independent languages re-

spectively. On one side it gives you the power of a modern frontend

framework for building reactive UI, on the other, it doesn't require a

sharp learning curve to start. I also like the fact that Vue focuses on the

UI and the UI only. This clear goal gives a clear roadmap for Vue to im-

prove, and I really appreciate it as a developer. Among all the features,

my favorite one is how the ecosystems around Vue are built, all the

tools are very connected to the core of Vue, and the strong community.

This is unique.

What’s the most exciting project you’ve done with Vue? For
what type of projects would you recommend trying out Vue?

Maya: I think every project I did with Vue is exciting! The most exciting

is the latest project where I start building a component library using Vue

Q

Maya Shavin
Senior Software
Engineer at Microsoft

Q

44

REVIEW OF VUE

and XState as the state engine

for controlling the component.

Another exciting one is Store-

frontUI, an e-commerce compo-

nent library I was part of. It was

to give the developers a library

dedicated to building scalable

and performant e-commerce

with Vue under the hood.

What is the most burning problem you’d see Vue tackling
next?

Maya: Scalability for large projects, definitely.

Have you adopted Vue 3 yet and how did it look? What was the
reason? OR What keeps you from implementing Vue 3? What
would make you change your mind?

Maya: I started adopting Vue 3 in some new projects, composition API

is great, but OptionAPI is still more organized in a way. Vue 3 is still

new and contains a lot of important breaking changes that prevent us

as library authors from migrating our projects to support Vue 3. And

because of the lack of support for Vue libraries, it's hard to start using

Vue 3 completely.

How do you see the future of Vue?

Maya: Vue continues to be a lightweight and innovative frontend frame-

work, especially with all the performant tools such as Pinia, Vite, Vitest

around it. However, the problem of Vue 3 support can slow down Vue

adoption for new developers, and prevent companies from choosing

Vue 3 to work with. The future is interesting to see.

Q

Q

Q

I would recommend try-
ing out Vue for small and
medium-size projects
first, such as e-com-
merce projects, or any
project you want to start
up quickly and scalable.

45

VUE REPORT: AMSTERDAM 2022

Why do you use Vue and what do you like most about it?

The first point is my love for open source. Vue being driven by an open-

source community means a lot to me, not only because I'm working

on open source projects most of the time. I started to learn Vue as I

began to work with Shopware 6 and have continued to do so ever since.

I quickly grew to love Vue's simplicity: Building and structuring compo-

nents in the way Vue provides feels clean and easy. On top of that, I was

thrilled to see it's easy to learn, and the learning curve was shallow. The

way a framework is onboarding new developers is a high priority, so Vue

won me over quite fast.

What’s the most exciting project you’ve done with Vue? For
what type of projects would you recommend trying out Vue?

The most exciting project with Vue is Shopware 6. It's an open-source

ecommerce platform using

Vue in its Administration

part. Even though it's still

on Vue 2, it's exciting to see

how we can build a large-

scale application with Vue.

What is the most burning problem you’d see Vue tackling
next?

It is more general, but as projects grow more complex, I'm always keen

to see how Vue can become even easier to use (as it already is) and

how the developer experience can become even better. That way, I'm

excited to see any simplification of usage and new features for the Vue

DevTools.

Q

Ramona Schwering
Software Developer
at Shopware

If I think about which proj-
ects to try out Vue for, it's
a beautiful idea to use it on
any single-page application.

Q

Q

46

REVIEW OF VUE

Have you adopted Vue 3 yet and how did it look? What was the
reason? OR What keeps you from implementing Vue 3? What
would make you change your mind?

Not yet, as Shopware is an open-source project, it would cause

breaks. This way, I'm still dealing with Vue 2 most of the time.

However, I hope we'll be able to change to Vue 3 in one of the

upcoming major versions, so I don't need to be convinced any-

more. I played around with Vue 3 in private side projects and

for test automation and got an excellent f irst impression.

How do you see the future of Vue?

One word: bright. Especially with this beautiful community and their di-

verse perspective and views. I'm excited to learn to get better in Vue and

build even more clean, perfor-

mant and fantastic applications

to help other people and myself

as soon as possible.

Q

Q

I'm confident that Vue
will stay so well-to-use
and focused on the
needs of us, developers.

Experts Corner

A deeper dive into the Vue Amsterdam presentation topics

and a guest interview with the Vue Core Team member -

Anthony Fu.

06.

48

VUE REPORT: AMSTERDAM 2022

Everything you need
to know about
Web Performance

Building efficient web applications doesn't have to be difficult.

Knowing what affects it and following a few good practices, we

can make each application work quickly. In this article, you will

learn how to measure performance, what affects it, and what

are the most effective ways to optimize the performance of

web applications.

I hear a lot of people saying that web performance is hard. Honestly, I don’t think that's

true. It could feel complex and intimidating at first glance because there is a lot of do-

main-specific naming, metrics, etc. but to build a fast website you don’t need to know

them. You need only need a basic understanding of what influences the speed of your

website the most and make sure you have it under control. That’s enough!

What influences your app performance?

Let's start with identifying all the aspects that influence it. I find this mental model

most useful when thinking about web performance.

There are essentially three “steps” that sum up the overall loading performance of

your app:

 � Server-side execution - first the HTML document has to be generated

on the server. In some cases, this step is costing us nothing because it’s

already generated (static sites).

Filip Rakowski
CTO & Co-founder
at Vue Storefront

49

ExPERTS CORNER

 � Network - the generated HTML document has to travel through wires and

routers to arrive in the user's browser.

 � Client-side execution - the document needs to be parsed, and dependen-

cies (CSS, JavaScript) have to be downloaded and executed. Once it’s all

done our page is fully loaded.

Optimizing server-side execution

If you’re building SPA there is a high chance you’re also adopting SSR. In that case,

the same code will run both on the server and the client. The best code is the one

that never has to run so you should first consider SSG. If it’s not an option and you’re

sticking to SSR make heavy use of full-page caching and distribute cached content

through CDN.

Some pages will have to be generated on the server during runtime and just cannot be

cached. In those, make sure to fetch only fast, essential data on the server and make

less important, and slower API calls on the client-side. This way you will significantly

improve your Time to First Byte.

Optimizing Network

Optimizing the networking part boils down to four main rules:

 � Ship the smallest possible assets. The bigger they are, the longer it will

take to download them.

 � Avoid chaining network requests (making one request depending on an-

other) and try to download them in parallel.

 � Avoid using multiple external domains in the critical path. Establishing a

connection with all of them will take more time than downloading every-

thing from one source.

 � Cache static assets (HTML, CSS JS) through a Service Worker.

50

VUE REPORT: AMSTERDAM 2022

If you take care of that there is a much smaller chance you will run into performance

bottlenecks on the network part.

Optimizing client execution

This is where we, frontend developers, have the biggest power and where we also

make a lot of mistakes. From my experience, 90% of frontend performance bottle-

necks are caused by two factors:

 � Unoptimized images

To make sure images aren’t the bottleneck simply adjust their size to the screen and

use next-gen formats like webp. You can automatically resize and optimize your imag-

es using <nuxt-img> and/or Cloudinary. Also, load your below-the-fold images lazily.

You can use native for that.

 � Unoptimized JavaScript

The thing that is usually leading to the biggest number of performance bottlenecks is

JavaScript. In SPAs it’s very easy to lose control over your JS bundle size. Here’s what

you can do to prevent it from growing into a Brontosaurus:

 � If you’re using SSR/SSG it means that many of your components are

already rendered on the server and they don’t need interactivity on

the frontend. You can drastically increase the speed of your hydra-

tion by hydrating only the components that need to be interactive

and only when they need to become ones. You can use Astro.build or

vue-lazy-hdyration plugin if you’re using Nuxt to control the hydration

process and exclude the components that don’t need it.

 � Split your app into multiple lazy-loaded chunks (start with routes!).

Every sidebar, modal or expensive widget can be loaded lazily on in-

teraction.

 � Your website could seem fast when you’re building it but once the

marketing team will put all the analytics there I guarantee it will slow

down. You can use web workers to run the non-critical code asynchro-

https://image.nuxtjs.org/

51

ExPERTS CORNER

nously. I strongly recommend Partytown - it’s integrated with all major

frameworks from the Vue ecosystem.

Measuring performance

If you can’t measure - you can’t say if there was any improvement. Measuring your

performance constantly is as important as optimizing it regularly.

If you want to quickly check how your website is performing try Page Speed Insights.

It will run a Lighthouse audit on your website using the closest Google Data Center.

You should also incorporate performance checks into your CI/CD pipeline. Use Light-

house CI to run a synthetic Lighthouse test on each PR and bundlesize package to

raise alerts if your bundle size exceeds a certain threshold.

Believe it or not but that’s all you need to know to have your performance under con-

trol!

https://github.com/nuxt-community/partytown-module
https://pagespeed.web.dev/
https://github.com/GoogleChrome/lighthouse-ci
https://github.com/GoogleChrome/lighthouse-ci
https://www.google.com/url?q=https://www.npmjs.com/package/bundlesize&sa=D&source=docs&ust=1653554775711590&usg=AOvVaw1qhGMeU-M8vMEF5j1V7qCq

52

VUE REPORT: AMSTERDAM 2022

Developer Experience
with Nuxt 3

Optimising developer experience with Nuxt 3 - a tour through

the ways the new version of Nuxt will save time and make your

life easier. Here I’ll explore zero-config options, dive into Nuxt

3's improvements around data fetching and along the way tour

a host of other features that will give you superpowers.

Great developer experience (DX) matters. It matters for our own feeling of well-being,

competence, and productivity. And it even matters to the businesses who employ de-

veloper teams - by improving efficiency, increasing agility and retaining talented team

members.

There are many factors that go into making an optimal environment for creators. Of

course, many of these factors are independent of the tools we use - such as a safe

environment, the trust of those we work with, and the opportunity to make a real dif-

ference in the world.

But some of what enables us to flourish comes from the tools we use. I think we feel

most productive when our tools optimize for creativity and decrease constraint.

Daniel Roe
Framework Architect
at Nuxt Labs

53

ExPERTS CORNER

Here are three ways that we’re trying to make Nuxt 3 an amazing experience for de-

velopers.

Zero config

Nuxt is a framework for building web applications that doesn’t require any configura-

tion at all. Create a page in the pages/directory and we automatically enable vue-rout-

er integration, including automatic bundle splitting.

That may be familiar to users coming from Nuxt 2. But we’ve also added a host of new

zero-config options. For example:

 � Files in plugins/ get automatically scanned and run when your app is

initialized on server/client - if needed, you can specify which with a .client

or .server suffix.

 � Any files in components/ become Vue components that can be used any-

where in your app - but don’t worry, by default they are still only imported

into the pages that use them, meaning your build will still be optimized for

production.

 � Any files in composables/ are scanned for exports, and these are then

auto-imported wherever you use them in your app.

 � Any files in middleware/ are automatically registered, and anything with

a .global suffix runs automatically on every route change.

54

VUE REPORT: AMSTERDAM 2022

 � There’s a new syntax for dynamic routes in pages/ enabling more com-

plex patterns for part-dynamic routes, such as pages/@[username].

vue.

 � Any files in server/api/ become Nitro server routes. You can specify

the HTTP method they accept by adding .get, .patch, etc. before the

file extension.

… and any files in server/middleware/ are automatically registered to run on every

server request to your built app.

No boilerplate

As much as possible, we’ve tried to get rid of the code that doesn’t matter.

Instead of needing to import utilities like ref, defineComponent, defineNuxtPlugin, and

so on, Nuxt automatically imports them when and where you use them.

We’ve also been able to make some significant DX improvements around data fetch-

ing. For example, in your server routes, you can directly return data rather than stringi-

fying it and setting the content-type headers manually. And using the new $fetch()

helper powered by ohmyfetch, you can directly access content returned from your

fetch calls without needing to parse the response yourself.

The new Nuxt CLI also makes it easy

to add new API routes, plugins, com-

ponents, composables, middleware,

layouts, and pages - meaning that

the out-of-the-box Nuxt starter is just

app.vue, an empty nuxt.config.

ts, a stub tsconfig.json that ex-

tends the one Nuxt will generate, a

package.json and a README.md.

https://github.com/unjs/ohmyfetch

55

ExPERTS CORNER

Fully typed

The types you get in your project are generated automatically at runtime based on the

specific settings of your project, and exposed to your editor so ‘what you see is what

you get.’

For example, auto-importable components used in your app are made available to

your IDE. If you’re using Volar, you’ll even get type support for the props of these com-

ponents.

… and any auto-importable composables you’re using throughout your app will also

be declared globally so you get full type support without needing to import them in-

dividually.

The types for any global injections you make in your plugins are also inferred and

injected globally into the `useNuxtApp` helper function.

If you have a pages/ directory, then you’ll even get as-you-type help when choosing

layout or middleware for your page using the new definePageMeta compiler macro.

Plus, your runtime configuration is typed, meaning you can see exactly what keys are

available when you call useRuntimeConfig() to access dynamic data that can be

set after your app is built.

You’ll even get type-hinting for the return type of any calls you make to the Nitro end-

points (in server/api/) you create within your app. That means you get full type

checking support for something like this:

And when using a Nuxt module, you no longer need to add the types manually to your

tsconfig - it’s all done automatically for you.

We’ve put a lot of work into taking Nuxt’s developer experience to the next level, lever-

aging tools like TypeScript to make the experience effortless.

https://github.com/johnsoncodehk/volar

56

VUE REPORT: AMSTERDAM 2022

If you’d like to try it out, head to https://v3.nuxtjs.org. And why not join the Nuxt com-

munity on https://discord.nuxtjs.org and on https://github.com/nuxt/framework? I’d

love to hear how you get on. Plus, Nuxt is a community project, so if you see any areas

where we can improve, I’d love to hear from you!

https://v3.nuxtjs.org
https://discord.nuxtjs.org
https://github.com/nuxt/framework

57

ExPERTS CORNER

The story of
improving developers’
experience with Vue
I N T E R V I E W

After the Vue 3 release, we have seen significant changes in

the whole Vue ecosystem. A new generation of tooling brings

improvements in all development aspects - developer experi-

ence has significantly improved thanks to Vite, Vitest and Volar.

What’s the story behind these frameworks and tools? And how

to make the transition to the latest version of Vue easier?

Anthony Fu
Core team member
of Vue, Nuxt and Vite

After the Vue 3 release, we have seen a lot of development in
the whole Vue ecosystem - what has changed and how does
it influence developers’ experience?

Anthony: Vue's major change comes down totransitioning from Options

API to Composition API. It’s about the capability of Composition API

to support TypeScript better and make the app logic possible to easily

decouple from components. This way you have a better organization

of your code which improves the developer’s experience and project

management - it makes code healthier.

What’s more, perforance in Vue 3 improved by around 30% compared to

Vue 2. This is the baseline that every app could get. Together with the

introduction of Composition API, we introduced the new Script Setup

RFC. It enables you to have a cleaner look of your Single File Compo-

nents so you can focus on the logic instead of writing the scaffolding

Q

https://vuejs.org/guide/introduction.html#api-styles
https://vuejs.org/api/sfc-script-setup.html#script-setup
https://vuejs.org/api/sfc-script-setup.html#script-setup

58

VUE REPORT: AMSTERDAM 2022

code in every single component that you have. It reduces time and ef-

fort which was used to write the parts you basically copied and pasted

like defineComponent. The script setup syntax reduces that a lot.

Also, there are minor features like suspense and async component sup-

port. All of those features are something that makes people migrating

to Vue 3 feel the real upgrade. These are the things mostly for the Vue

itself but it’s not all - there’s also Vite.

Speaking of Vite, what kind of improvements does it bring
over existing alternatives?

Anthony: Vite is framework-agnostic and was originally created for Vue

but currently serves more frameworks like React for example. Vite lever-

ages the power of ESM inside the browser. You don’t need to bundle

your apps but can ship everything - modules inside your source code

directly, with some transpilation to remove the TypeScript notations so

that the browser understands the code.

Let me give you an example, in

Vue 2 and Vue CLI you needed to

wait one or two seconds for your

changes to appear in the app. It

doesn’t seem like a lot but in prac-

tice, your changes might break the

app and you would see it only af-

ter some time. Sometimes it can

take a lot of time to trace back

changes and fix errors. In Vue 3,

you can try different combinations

during coding and see the effect immediately so you can quickly fig-

ure out what’s the best solution. It reduces the feedback loop of your

changes and it’s something that makes a huge difference in developers'

experience.

Q

Together with HMR (hot
module replacement),
it enables a really fast
development. I mean
really fast - start-up
times can decrease
tenfold in comparison
to other tools, such as
webpack.

59

ExPERTS CORNER

Also, having an ecosystem on top of Vite is a huge advantage. In Nuxt

3 we support both Vite and webpack as bundlers and you can switch

between them but we made Vite the default bundler so you can get the

benefits of the powerfulness that Vite provides. These are fundamental

changes to the Vue ecosystem.

How about Vitest? What’s the difference compared to other
testing frameworks?

Anthony: Vitest is a testing framework and its API is pretty similar to

Jest which is the most popular testing framework. It was created to

solve the issues we experienced in Vite.

Some of Vite users wanted to

have a better way of testing their

app and had trouble configuring

Jest with Vite. It became a barri-

er for people to migrate to Vite.

The most important feature of

Vitest to me is that it offers everything on demand, unlike previous bun-

dlers like a webpack. If you visit a page, it will only request the modules

you use inside of this page and when you request a page, Vite starts to

transpile. It only does the work that’s necessary while in webpack, you

need to bundle your whole app and wait for your app to start.

By using Vite and Vitest you can use the same configuration and the

same plugins. Thanks to that you can have a more consistent environ-

ment between the tests and your Vite app.

With the speed of Vite and this live feedback, do you think
we might see even more cool integration into things like our
IDEs?

Anthony: We already have VS code extensions and also we have Vitest

UI. If you enable flag, it will open up an app server which is also pow-

Q

Q

We tried to find some
tools to recommend
but we didn’t really find
any good options so we
decided to utilize Vite
itself.

https://nuxtjs.org/announcements/nuxt3-rc/#vite--webpack
https://vitest.dev/guide/features.html

60

VUE REPORT: AMSTERDAM 2022

ered by Vite. You can view your test files visually, you can click and see

what’s going on instead of a huge console log.

Currently I’m experimenting with ideas like running your tests inside

your source file, similarly to Rust. Rust has this feature that you can

declare a testing block inside your source file. The test file will be lat-

er moved away when you compile

it into production view. But when

you’re on the task, it can share the

context of your source files. You

can have an internal state that you

can test without the need of ex-

porting it outside of your module.

How do you feel about the adoption rate of Vite and Vitest in
the Vue community and beyond?

Anthony: I’m not familiar with the numbers but the adoption is still rela-

tively small in comparison to previous bundlers like webpack since the

migration takes time. However, the satisfaction of the community using

tools and leaving positive feedback makes me really happy. People are

willing to try it and once they do it, they stick to it. The Vite team feels

really proud of these tools.

What do you find the most important aspect of Vue 3 for busi-
nesses and when would you recommend transition?

Anthony: Whether to make a change or not, you need to weigh your pros

and cons. Vue 3 is written from scratch, the codebase is completely

different and we made some breaking changes. Nuxt 3 also has a brand

new codebase. At the time Vue 3 was released, most of the existing UI

frameworks are not really compatible between Vue 2 and 3. If you want

to make them compatible with Vue 3, there will be quite some work to

do.

Q

Q

These are the options
we want to offer and
the approach we sup-
port so I would expect
more future integra-
tions.

61

ExPERTS CORNER

First, the ecosystem needs time to migrate to Vue 3. If you have a large

app, it might not be an easy task and it takes time and carries some risk

of breaking your app during migration. Some dependencies might not

work and you may need to look for alternatives.

The biggest change between

Vue 2 and Vue 3 is IE11. We

used a new reactivity system

based on Proxy features inside

the Javascript which weren’t pre-

viously available in IE. That’s the

tradeoff we made here in Vue 3.

If your app really targets users

still using older IE, you might not want to migrate to Vue3 at this mo-

ment. On the other hand, Vue 2 is still being supported for 1-2 years

down the line.

What is the most burning problem you see Vue Core Team
tackling next? What are your plans for the future?

Anthony: I think we’ve made significant changes during the last one and

half years and solved lots of burn-

ing problems. We’re already made

the transition from Vue 2 to 3 a lot

easier. Thanks to introducing com-

patible mode you can use Vue 3 as

a core with some Vue2-compatible

APIs.

We have a Vue 2 plugin called @vue/composition-api which I maintain.

So you don’t need to migrate to Vue3, you can still use the Composition

API and get the benefits from it which I think is awesome. What’s more,

I made a plugin for Vite and webpack for the new Script setup syntax

inside a Vue 2 app. For Nuxt we implemented Nuxt Bridge which brings

Q

This compatible mode
has a lot of flags that
you can toggle and for
each breaking change,
you can migrate your
codebase step by step.

If you don’t want to up-
grade now, it’s totally
fine. However, for the
new app, I would totally
recommend going with
Vue 3 from the begin-
ning.

62

ExPERTS CORNER

Nuxt 3 features to Nuxt 2.

We also had quite a few libraries from the community, for example,

VueUse, that can run in both Vue 2 and 3 seamlessly. Our roadmap for

Vue core is almost done. While we also have some interesting exper-

iments in progress like reactivity transform, which you can find in our

RFC repo.

https://vueuse.org/
https://github.com/vuejs/rfcs

Technical
Case Studies

How can Vue solve technical challenges? Five real-life

examples with lessons learned and solutions based on

Vue projects delivered at Monterail.

07.

64

VUE REPORT: AMSTERDAM 2022

3d and 2d object management
and data synchronization

1

We’ve used the framework’s declarative approach to build an interior designing scene

inside the application. Additionally, we’ve leveraged Vue’s reactivity and virtual DOM

to manage the DOM elements.

The 3D engine had its own internal state and our goal was to connect it with the cen-

tral application state. Since a constant full-state synchronization would be costly, we

can trick Vue.js to optimize it for us. It internally uses a mechanism called Virtual DOM

to keep the DOM up to date with the component state by minimizing the number of

DOM changes. We used it to generate synchronization calls to the 3D engine, accord-

ing to a relevant part of the state, by building DOM representations of 3D entities and

optimizing its changes with the Virtual DOM.

Scan code
and read more
about building
3D app with Vue

Challenge:

Building a web engine that will be able to manage 3D and 2D

scene full of objects in real-time and synchronize the data.

Solution:

Vue and its reactivity engine are a perfect fit here.

65

TECHNICAL CASE STUDIES

Creating a page builder

Challenge:

Creating a multi-tenant tool for building web pages visually.

Solution:

Vue, together with core libraries such as vue-router or Vuex, is

a very flexible framework. It allows you to completely change

the website structure, routing, and dynamically add and remove

store modules at the runtime. We took advantage of these op-

portunities when creating a visual website builder.

In the application, the users had the option to define the routing of the new website.

For each page of a new website, they could add elements from a predefined list, re-

move them or change the position of individual parts of the page using drag and drop.

Each component was also editable — users could change its colors and content. The

website created with this tool was dynamically created in the runtime, in the user's

browser, based on the document describing the website structure which was loaded

asynchronously.

In order to improve the SEO and UX of the output website, the whole thing was also

rendered on the server-side (SSR). We used the "Dynamic Components" and "Async

Components" features to render components on individual subpages of the applica-

tion. Those mechanisms built into Vue, while very powerful, are very easy to use and

do not add the extra complexity of the application. Each component was loaded only

when it was needed (lazy loading), which was necessary due to the large library of

components that could be used.

2

66

VUE REPORT: AMSTERDAM 2022

Showing huge amounts of data3

Challenge:

Showing huge amounts of data in the form of a tree or 2D grid.

Solution:

The application is directed at system engineers, so it needs to

show huge amounts of data in a user-friendly way.

We’ve leveraged DOM virtualization to render only the data that is currently visible on

the screen. When the user scrolls the page, a special component responsible for the

list virtualization is listening for the `scroll` event. It is checking which elements should

be visible on the screen and displays only these items. Thanks to the use of scoped

slots, this behavior is invisible not only to the user, but also to programmers – the

component cleverly hides this implementation.

For lists (that displayed 10-20 items on the screen), this solution worked perfectly but

turned out to be too slow for the 2D grid view. Such a grid in our application could have

a size larger than 10k x 10k and the screen often fit more than 30x30. It meant that we

needed to render more than 900 elements on the screen. This is not a big problem for

Vue, which is very performant, to render this number of elements once.

However, we found out that it is not optimal to use Vue to frequently perform swaps

for hundreds of items while scrolling.

Vue compares the keys of individual elements with each other, which already takes a

long time with such a number of elements, but the rendering itself is also slowed down

due to the overhead of reactivity.

67

TECHNICAL CASE STUDIES

We programmed the same process as for the list virtualization component: listening

for the `scroll` event and checking which items should be visible on the screen. How-

ever, we decided to render elements imperatively. In the end, we’ve set up Vue to render

only an empty UI element of an appropriate size. Thanks to the fact that we know the

order in which elements will change while scrolling the page, we were able to optimize

the process of comparing keys.

We wanted to keep using the transparent scoped slots API, so we used it but rendered

it manually in the custom render function triggered by the `scroll` event. The rendered

grid cells were placed and removed in the element rendered by Vue with native JavaS-

cript methods.

Creating a SEO-friendly hybrid
application

Challenge:

Building an application with great SEO that's also available as a

mobile application with minimal code duplication.

Solution:

We have created two separate build bundles - one for our web

application with SSR, the other for a hybrid mobile application

utilizing Ionic and Capacitor, all bundled using Vite from a sin-

gle codebase.

4

68

VUE REPORT: AMSTERDAM 2022

We introduced SSR relatively easily following Vite's SSR guide to optimize for SEO on

all public pages of the app in our web build. Ionic was introduced to provide the best

native feeling we can get for the mobile applications out of the box and also add some

native-like UI components for the mobile-only part of our mobile interfaces.

Our goal was to re-use as much code as we can and as such Vue's composition API

was a great help here. We leveraged composition API in order to reuse code in terms

of platform-specific component variants and used Vue's async components as a way

to provide those for a given platform if necessary.

All of our platform-agnostic components were implemented in a responsive fashion

and doing so allowed us to share the majority of the code between the two with min-

imal exceptions.

As a result, we created a web application with SSR along with hybrid iOS and Android

mobile applications built from one codebase.

Rapid UI redesign

Challenge:

When a project was in its final stages, we had to perform a

rapid and comprehensive redesign of the entire application in-

terface. Styles were global and not scoped at that time.

5

Solution:

We pivoted the fronted design strategy and started using Vue

with small, reusable components, that allowed for style encap-

sulation.

69

TECHNICAL CASE STUDIES

Using Vue’s slots and scoped slots, we quickly created a collection of simple reusable

components from the new design system. We gradually replaced almost all usages

of global classes and styles with our styled components. Thanks to the use of com-

ponents and scoped styles, the unchanged pages still looked as before. We were able

to focus on each component separately and we weren’t worried about unintended

changes and naming conflicts related to global style.

© Monterail, June 2022

Monterail is a full-service software development company from Poland, the official

Vue.js partner and author of four State of Vue.js reports. Our experts, using battle-test-

ed technologies and frameworks, have delivered more than 30 Vue-based projects. At

Monterail, our love for Vue is more than just utilitarian - it goes beyond Vue services

and projects.

Scan the QR code

and find out more

www.monterail.com

A M S T E R D A M , J U N E 2 0 2 2

